Introducing Crunchy Data Warehouse: A next-generation Postgres-native data warehouse. Crunchy Data Warehouse Learn more
Elizabeth Christensen
Elizabeth Christensen
If you missed the database news lately, you could have missed that we just fused DuckDB with Postgres to build a really fast analytics platform based on Postgres.
There’s so many interesting things you can do with this platform so expect to hear from me again 😉. Today I just want to show off one really simple trick for getting big data sets or training data into Postgres through Hugging Face.
Önder Kalacı
Önder Kalacı
We recently introduced support for querying Iceberg tables from PostgreSQL in Crunchy Bridge for Analytics. Iceberg defines a way to store tables in data lakes (usually as Parquet files in S3) with support for snapshots and other important database features, and it is designed with high performance analytics in mind.
If you’re new to Crunchy Bridge, it offers a fully managed PostgreSQL
Marco Slot
Marco Slot
In April we launched Crunchy Bridge for Analytics, which is a managed PostgreSQL option that enables fast and seamless querying of your data lake. Our initial release was focused on building a rock solid foundation for high performance analytics in PostgreSQL. We have since been hard at work turning it into a comprehensive analytics solution.
Our goals in building Crunchy Bridge for Analytics are to:
Marco Slot
Marco Slot
Last month we launched Crunchy Bridge for Analytics, a new managed PostgreSQL offering that lets you query your data lake directly from PostgreSQL. Since then, we have had quite a few exciting conversations with customers handling large amounts of data in PostgreSQL. A common question is of course: How does it work?
In this post, I wanted to shed some light on the internals. Crunchy Bridge for Analytics abstracts the query engine to offer fast analytics on data in Amazon S3 in PostgreSQL. In principle, it can support multiple query engines, and it likely will in the future, but the current query engine is DuckDB.
Marco Slot
Marco Slot
One of the unique characteristics of the recently launched Crunchy Bridge for Analytics is that it is effectively a hybrid between a transactional and an analytical database system. That is a powerful tool when dealing with data-intensive applications which may for example require a combination of low latency, high throughput insertion, efficient lookup of recent data, and fast interactive analytics over historical data.
A common source of large data volumes is append-mostly time series data or event data generated by an application. PostgreSQL has various tools to optimize your database for time series, such as partitioning
Marco Slot
Marco Slot
A lot of the world’s data lives in data lakes, huge collections of data files in object stores like Amazon S3. There are many tools for querying data lakes, but none are as versatile and have as wide an ecosystem as PostgreSQL. So, what if you could use PostgreSQL to easily query your data lake with state-of-the-art analytics performance?
Today we’re announcing Crunchy Bridge for Analytics